3.1.94 \(\int \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [94]

3.1.94.1 Optimal result
3.1.94.2 Mathematica [A] (verified)
3.1.94.3 Rubi [A] (verified)
3.1.94.4 Maple [B] (verified)
3.1.94.5 Fricas [A] (verification not implemented)
3.1.94.6 Sympy [F]
3.1.94.7 Maxima [A] (verification not implemented)
3.1.94.8 Giac [B] (verification not implemented)
3.1.94.9 Mupad [F(-1)]

3.1.94.1 Optimal result

Integrand size = 23, antiderivative size = 72 \[ \int \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}-\frac {\cos (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{f} \]

output
arctanh(sec(f*x+e)*b^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))*b^(1/2)/f-cos(f*x+e 
)*(a-b+b*sec(f*x+e)^2)^(1/2)/f
 
3.1.94.2 Mathematica [A] (verified)

Time = 0.83 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.94 \[ \int \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=-\frac {\left (-2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {a+b+(a-b) \cos (2 (e+f x))}}{\sqrt {2} \sqrt {b}}\right )+\sqrt {2} \sqrt {a+b+(a-b) \cos (2 (e+f x))}\right ) \csc (e+f x) \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)} \sin (2 (e+f x))}{4 f \sqrt {a+b+(a-b) \cos (2 (e+f x))}} \]

input
Integrate[Sin[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
-1/4*((-2*Sqrt[b]*ArcTanh[Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]]/(Sqrt[2]* 
Sqrt[b])] + Sqrt[2]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]])*Csc[e + f*x]*S 
qrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2]*Sin[2*(e + f*x)])/( 
f*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]])
 
3.1.94.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.97, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 4147, 247, 224, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (e+f x) \sqrt {a+b \tan (e+f x)^2}dx\)

\(\Big \downarrow \) 4147

\(\displaystyle \frac {\int \cos ^2(e+f x) \sqrt {b \sec ^2(e+f x)+a-b}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 247

\(\displaystyle \frac {b \int \frac {1}{\sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)-\cos (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {b \int \frac {1}{1-\frac {b \sec ^2(e+f x)}{b \sec ^2(e+f x)+a-b}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a-b}}-\cos (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )-\cos (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{f}\)

input
Int[Sin[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
(Sqrt[b]*ArcTanh[(Sqrt[b]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]] - 
Cos[e + f*x]*Sqrt[a - b + b*Sec[e + f*x]^2])/f
 

3.1.94.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 247
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 1))), x] - Simp[2*b*(p/(c^2*(m + 1)))   Int[ 
(c*x)^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && GtQ[p, 
0] && LtQ[m, -1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, 
m, p, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4147
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Simp[1/(f*ff^ 
m)   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m + 1 
)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[( 
m - 1)/2]
 
3.1.94.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(453\) vs. \(2(64)=128\).

Time = 0.60 (sec) , antiderivative size = 454, normalized size of antiderivative = 6.31

method result size
default \(-\frac {\cos \left (f x +e \right ) \left (\ln \left (-4 \sqrt {b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}-4 \sqrt {b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sec \left (f x +e \right )-4 b \sec \left (f x +e \right )\right ) b^{\frac {3}{2}}-\ln \left (-4 \sqrt {b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}-4 \sqrt {b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sec \left (f x +e \right )-4 b \sec \left (f x +e \right )\right ) \sqrt {b}\, a +\sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \cos \left (f x +e \right ) a -\sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, b \cos \left (f x +e \right )+\sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, a -\sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, b \right ) \sqrt {a +b \tan \left (f x +e \right )^{2}}}{f \left (a -b \right ) \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cos \left (f x +e \right )+1\right )}\) \(454\)

input
int(sin(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/f/(a-b)*cos(f*x+e)*(ln(-4*b^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(c 
os(f*x+e)+1)^2)^(1/2)-4*b^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f* 
x+e)+1)^2)^(1/2)*sec(f*x+e)-4*b*sec(f*x+e))*b^(3/2)-ln(-4*b^(1/2)*((a*cos( 
f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)-4*b^(1/2)*((a*cos(f*x+e 
)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*sec(f*x+e)-4*b*sec(f*x+e))*b 
^(1/2)*a+((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f* 
x+e)*a-((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*b*cos(f* 
x+e)+((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*a-((a*cos( 
f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*b)*(a+b*tan(f*x+e)^2)^( 
1/2)/((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)/(cos(f*x+e 
)+1)
 
3.1.94.5 Fricas [A] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 203, normalized size of antiderivative = 2.82 \[ \int \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\left [-\frac {2 \, \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) - \sqrt {b} \log \left (-\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{2 \, f}, -\frac {\sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right ) + \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{f}\right ] \]

input
integrate(sin(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[-1/2*(2*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) - 
sqrt(b)*log(-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e 
)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/f, -(sqrt(-b 
)*arctan(sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f* 
x + e)/b) + sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) 
)/f]
 
3.1.94.6 Sympy [F]

\[ \int \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \sin {\left (e + f x \right )}\, dx \]

input
integrate(sin(f*x+e)*(a+b*tan(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*tan(e + f*x)**2)*sin(e + f*x), x)
 
3.1.94.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.35 \[ \int \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=-\frac {2 \, \sqrt {a - b + \frac {b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + \sqrt {b} \log \left (\frac {\sqrt {a - b + \frac {b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) - \sqrt {b}}{\sqrt {a - b + \frac {b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + \sqrt {b}}\right )}{2 \, f} \]

input
integrate(sin(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
-1/2*(2*sqrt(a - b + b/cos(f*x + e)^2)*cos(f*x + e) + sqrt(b)*log((sqrt(a 
- b + b/cos(f*x + e)^2)*cos(f*x + e) - sqrt(b))/(sqrt(a - b + b/cos(f*x + 
e)^2)*cos(f*x + e) + sqrt(b))))/f
 
3.1.94.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 389 vs. \(2 (64) = 128\).

Time = 0.70 (sec) , antiderivative size = 389, normalized size of antiderivative = 5.40 \[ \int \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {2 \, {\left (\frac {b \arctan \left (-\frac {\sqrt {a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a} - \sqrt {a}}{2 \, \sqrt {-b}}\right )}{\sqrt {-b}} + \frac {2 \, {\left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )} a - {\left (\sqrt {a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )} b - a^{\frac {3}{2}} + \sqrt {a} b\right )}}{{\left (\sqrt {a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )}^{2} + 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )} \sqrt {a} - 3 \, a + 4 \, b}\right )} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )}{f} \]

input
integrate(sin(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
2*(b*arctan(-1/2*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/ 
2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a) - sq 
rt(a))/sqrt(-b))/sqrt(-b) + 2*((sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*ta 
n(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2* 
e)^2 + a))*a - (sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2* 
e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*b - a 
^(3/2) + sqrt(a)*b)/((sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x 
+ 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a)) 
^2 + 2*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 - 2 
*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*sqrt(a) - 3*a 
 + 4*b))*sgn(tan(1/2*f*x + 1/2*e)^2 - 1)/f
 
3.1.94.9 Mupad [F(-1)]

Timed out. \[ \int \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \sin \left (e+f\,x\right )\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a} \,d x \]

input
int(sin(e + f*x)*(a + b*tan(e + f*x)^2)^(1/2),x)
 
output
int(sin(e + f*x)*(a + b*tan(e + f*x)^2)^(1/2), x)